Midterm Exam - Analysis IV B. Math III

20 February, 2023

- (i) Duration of the exam is 3 hours.
- (ii) The maximum number of points you can score in the exam is 100 (total = 105).
- (iii) You are not allowed to consult any notes or external sources for the exam.

Name: _

Roll Number: _____

- 1. (a) (15 points) Show that there exists a linear functional $Lim : \ell^{\infty}(\mathbb{N}) \to \mathbb{R}$ with the following properties:
 - (i) *Lim* is a positive linear functional of norm one.
 - (ii) For each sequence $x := \{x_n\} \in \ell^{\infty}(\mathbb{N})$, we have

$$\liminf_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n} \le Lim(x) \le \limsup_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n}.$$

(iii) For each sequence $x := \{x_n\} \in \ell^{\infty}(\mathbb{N})$, we have

$$Lim(x) = Lim(\tau_1(x)),$$

where $\tau_1 : \ell^{\infty}(\mathbb{N}) \to \ell^{\infty}(\mathbb{N})$ denotes the left-shift operator. In other words, *Lim* is invariant under left-shifts of sequences.

(b) (10 points) Let $\varphi : [0,1] \to [0,1]$ be a continuous function and $\Phi : C([0,1]) \to C([0,1])$ be defined by $\Phi(f) = f \circ \varphi$. Show that there is a Φ -invariant linear functional $\rho : C([0,1]) \to \mathbb{R}$, that is, $\rho \circ \Phi = \rho$.

Total for Question 1: 25

2. (20 points) Let $f, g: [0,1] \to \mathbb{R}$ be two Lebesgue-integrable functions satisfying

$$\int_0^t f(x) \, dx \le \int_0^t g(x) \, dx,$$

for all $t \in [0,1]$. If $\varphi : [0,1] \to \mathbb{R}$ is a non-negative decreasing function, show that the functions φf and φg are Lebesgue-integrable over [0,1] and that they satisfy

$$\int_0^t \varphi(x) f(x) \, dx \le \int_0^t \varphi(x) g(x) \, dx$$

for all $t \in [0, 1]$.

3. (15 points) Assume that f is continuous on [0,1], f(0) = 0, f'(0) exists. Prove that the Lebesgue integral

$$\int_{0}^{1} f(x) x^{-\frac{3}{2}} dx$$

Total for Question 3: 15

Total for Question 2: 20

- exists.
- 4. (a) (10 points) Show that $\log \frac{1}{1-x} \in L^1([0,1]; dx)$ and with justification, compute the following integral:

$$\int_0^1 \log \frac{1}{1-x} \, dx.$$

(b) (10 points) Prove that the function,

$$\frac{1}{1+x^2\sin^2 x},$$

is not Lebesgue-integrable on $[1, \infty)$.

Total for Question 4: 20

- 5. (a) (15 points) Let $F(y) = \int_0^\infty \frac{\sin xy}{x(x^2+1)} dx$ if y > 0. Show that F satisfies the differential equation $F''(y) F(y) + \frac{\pi}{2} = 0$ and deduce that $F(y) = \frac{1}{2}\pi(1 e^{-y})$.
 - (b) (10 points) For a > 0, y > 0, compute the value of

$$\int_0^\infty \frac{\cos xy}{(x^2 + a^2)} \, dx,$$

with proper justification of the steps.

Total for Question 5: 25