Midterm Exam - Analysis IV B. Math III

20 February, 2023
(i) Duration of the exam is 3 hours.
(ii) The maximum number of points you can score in the exam is 100 (total $=105$).
(iii) You are not allowed to consult any notes or external sources for the exam.

Name: \qquad
Roll Number:

1. (a) (15 points) Show that there exists a linear functional $\operatorname{Lim}: \ell^{\infty}(\mathbb{N}) \rightarrow \mathbb{R}$ with the following properties:
(i) Lim is a positive linear functional of norm one.
(ii) For each sequence $x:=\left\{x_{n}\right\} \in \ell^{\infty}(\mathbb{N})$, we have

$$
\liminf _{n \rightarrow \infty} \frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \leq \operatorname{Lim}(x) \leq \limsup _{n \rightarrow \infty} \frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

(iii) For each sequence $x:=\left\{x_{n}\right\} \in \ell^{\infty}(\mathbb{N})$, we have

$$
\operatorname{Lim}(x)=\operatorname{Lim}\left(\tau_{1}(x)\right)
$$

where $\tau_{1}: \ell^{\infty}(\mathbb{N}) \rightarrow \ell^{\infty}(\mathbb{N})$ denotes the left-shift operator. In other words, Lim is invariant under left-shifts of sequences.
(b) (10 points) Let $\varphi:[0,1] \rightarrow[0,1]$ be a continuous function and $\Phi: C([0,1]) \rightarrow$ $C([0,1])$ be defined by $\Phi(f)=f \circ \varphi$.. Show that there is a Φ-invariant linear functional $\rho: C([0,1]) \rightarrow \mathbb{R}$, that is, $\rho \circ \Phi=\rho$.

Total for Question 1: 25
2. (20 points) Let $f, g:[0,1] \rightarrow \mathbb{R}$ be two Lebesgue-integrable functions satisfying

$$
\int_{0}^{t} f(x) d x \leq \int_{0}^{t} g(x) d x
$$

for all $t \in[0,1]$. If $\varphi:[0,1] \rightarrow \mathbb{R}$ is a non-negative decreasing function, show that the functions φf and φg are Lebesgue-integrable over $[0,1]$ and that they satisfy

$$
\int_{0}^{t} \varphi(x) f(x) d x \leq \int_{0}^{t} \varphi(x) g(x) d x
$$

for all $t \in[0,1]$.
Total for Question 2: 20
3. (15 points) Assume that f is continuous on $[0,1], f(0)=0, f^{\prime}(0)$ exists. Prove that the Lebesgue integral

$$
\int_{0}^{1} f(x) x^{-\frac{3}{2}} d x
$$

exists.
Total for Question 3: 15
4. (a) (10 points) Show that $\log \frac{1}{1-x} \in L^{1}([0,1] ; d x)$ and with justification, compute the following integral:

$$
\int_{0}^{1} \log \frac{1}{1-x} d x
$$

(b) (10 points) Prove that the function,

$$
\frac{1}{1+x^{2} \sin ^{2} x}
$$

is not Lebesgue-integrable on $[1, \infty)$.
Total for Question 4: 20
5. (a) (15 points) Let $F(y)=\int_{0}^{\infty} \frac{\sin x y}{x\left(x^{2}+1\right)} d x$ if $y>0$. Show that F satisfies the differential equation $F^{\prime \prime}(y)-F(y)+\frac{\pi}{2}=0$ and deduce that $F(y)=\frac{1}{2} \pi\left(1-e^{-y}\right)$.
(b) (10 points) For $a>0, y>0$, compute the value of

$$
\int_{0}^{\infty} \frac{\cos x y}{\left(x^{2}+a^{2}\right)} d x
$$

with proper justification of the steps.
Total for Question 5: 25

